2 Sets, Functions, Sequences, and Sums

2.1 Sets

1. A <u>set</u> is a collection of objects.

The objects of the set are called elements or members.

Use capital letters : A, B, C, S, X, Y to denote the sets.

Use lower case letters to denote the elements: a, b, c, x, y.

If x is an element of the set X, we write $x \in X$.

If x is not an element of the set X, we write $x \notin X$.

- 2. Describing a set
 - (a) <u>list all elements if the set consists of a small number of elements:</u>

 $X = \{a, b, c\}$

 $A = \{1, 2, ..., 100\}$ – need to list the first two elements to see the pattern $S = \{1, 3, 5, ...\}$ – list the first 3 elements to give away the pattern. (Not correct to list: $S = \{1, 3, 5, 7, ...\}$, which is redundant, nor $S = \{1, 3, ...\}$ because of not enough information.)

NOTE:

- $A = \{1, 2, 3\} = \{2, 1, 3\} = \{1, 1, 3, 2\}$
- $\emptyset = \{\}$ is the empty set
- $Y = {\emptyset} \neq \emptyset$
- (b) A set with condition(s): $S = \{x | p(x)\}$ or $\{x : p(x)\}$, that is: S contains all the elements x that satisfy the condition (oe have the property) p(x) a property that depends on x.

Ex: $A = \{x : x \text{ is even }\} = \{\dots, -4, -2, 0, 2, 4, \dots\}.$

 $S = \{x : (x-1)(x+2) = 0\} = \{1, -2\}$

 $T = \{x : |x| = 1\} = \{-1, 1\}$

 $X = \{x : x \text{ is a student in MA1025 } \}.$

A more complex example: Let $A = \{1, 2, ..., 10\}$. Then define $B = \{x \in A : x < 7\} = \{1, 2, 3, 4, 5, 6\}$

3. Special sets

 $\overline{\mathbb{N} = \{1, 2, \dots, \}}$ is the set of all positive whole numbers

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers (whole numbers)

 $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}$ is the set of the rational numbers

 \mathbb{I} = the set of irrationals, for example: $\pi, \sqrt{2}, -\sqrt{3}$

 \mathbb{R} = the real numbers

 \mathbb{C} = the set of complex numbers: a + bi

4. We say that a set A is a <u>subset</u> of a set B if every element of A is an element of B. If A is a subset of B, we write $A \subseteq B$.

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}.$$

1

If a set A is <u>not</u> a subset of a set B, we write $A \nsubseteq B$. In this case, there is an element in the set A that is not in B.

The empty set \emptyset is a subset of every set. (vacuous proof)

- 5. Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$. We then write A = B. Note that A and B will have the same elements, but they might be expressed differently. If they are not equal then we write $A \neq B$ (and that means that either A has an element that is not in B, or that B has an element that is not in A).
- 6. For a set A, we say that S is a proper subset of a set B if $A \subseteq B$ and $A \neq B$, and it is denoted by $A \subset B$.
- 7. For a set S, the cardinality of S,|S|, is the number of elements in the set S. If the cardinality is a finite number, then S is said to be finite. Otherwise it is infinite. The set of natural numbers is an example of an infinite set.
- 8. the <u>intervals</u> are infinite sets, as described below. Let $a, b \in \mathbb{R}$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b.\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b.\}$$

$$(a, b] = \{ x \in \mathbb{R} : a < x \le b. \}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b.\}$$

$$(a, \infty) = \{ x \in \mathbb{R} : a < x. \}$$

$$(-\infty, b] = \{x \in \mathbb{R} : x \le b.\}$$

- 9. For a set A, the power set P(A) of A is the set of all subsets of A.
 - Ex 1: $A = \{a, b\}$. Then $\mathcal{P}(A) = \{\emptyset, \{\dashv\}, \{\lfloor\}, \{\dashv, \lfloor\}\}\} \neq \{, \dashv, \lfloor, \{\dashv, \lfloor\}\}\}$ since a, b are not sets without the curly braces.

$$\mathcal{P}(\mathcal{A}) = \triangle = \in^{\in} = \in^{|\mathcal{A}|}.$$

Ex 2:
$$C = \{\emptyset, \{\emptyset\}\}\$$
. Then $\mathcal{P}(\mathcal{B}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\$.

$$\mathcal{P}(\mathcal{B}) = \triangle = \in^{\in} = \in^{|\mathcal{C}|}.$$

- 10. In general: $|\mathcal{P}(\mathcal{A})| = \in |\mathcal{A}|$.
- 11. The Cartesian product of two sets \boldsymbol{A} and \boldsymbol{B} is

$$A \times B = \{(a, b) : x \in Aandb \in B\}.$$

Note that (a, b) is an ordered pair!! That is $(a, b) \neq (b, a)$

Example: Let $A = \{x, y\}$ and $B = \{1, 2, 3\}$. Then

$$A\times B=\{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)\}$$

$$B \times A = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}.$$

Note that $A \times B \neq B \times A$.

- 12. What is $|A \times B|$? $|A \times B| = |A| \times |B| = 6$ in this case.
- 13. If $A = \emptyset$, then $A \times B = \emptyset$ and $B \times A = \emptyset$, for any set B.
- 14. the <u>truth set</u> of a predicate P is the set of elements (in the given domain) that makes P true.

2.2 Set Operations

1. When we talk about subsets, we are concerned with subsets of a larger set, usually called <u>universal set</u> denoted by U.

We can use Venn Diagrams to represent a set:

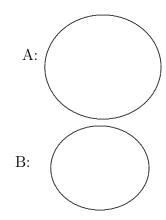


Figure 1: A Venn Diagram

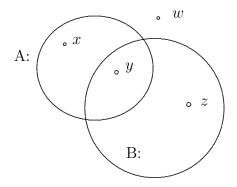
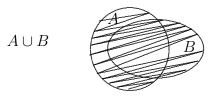


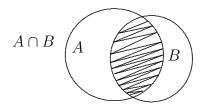
Figure 2: A Venn Diagram

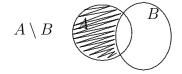
From the digram: $x \in A, y \in B, z \in A, z \in B, w \notin A, w \notin B$.

- 2. Let A and B be two sets. The following are ways of combining two or more sets:
 - (a) The <u>intersection</u> of A and B: $A \cap B = \{x : x \in A \text{ and } x \in B\}$. If $A \cap B = \emptyset$, then A and B are disjoint.
 - (b) The <u>union</u> of A and B: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
 - (c) The <u>difference</u> of A and B: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$
 - (d) The complement of A: $\bar{A} = \{x : x \notin A\} = U \setminus A$, where U is the universal set.
 - (e) The relative complement of B in A: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$

Example: Let $A = \{1, 3, 5, 6, 7\}$, $B = \{1, 3, 8\}$, and the universal set $U = \{1, 2, ..., 10\}$. What are the intersection, union, difference...?







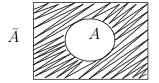


Figure 3: Set operations

- (a) $A \cap B = \{1, 3\}.$
- (b) $A \cup B = \{1, 3, 5, 6, 7, 8\}.$
- (c) the difference $A \setminus B = \{5, 6, 7\}$, and $B \setminus A = \{8\}$
- (d) $\bar{A} = \{2, 4, 8, 9, 10\}$
- (e) the relative complement $A \setminus B = \{5, 6, 7\}$.
- 3. <u>set identities</u> -page 124 (note that they are similar to the "or" and "and" tables for predicates)
- 4. $|A \cup B| = |A| + |B| + |A \cap B|$, which is the Inclusion Exclusion principle for two sets.
- 5. when proving inequalities, there are three choices of techniques:
 - "chasing the element" (see Example 10 page 125): In order to show that some set X is a subset of Y, we choose an arbitrary element $x \in X$, and we show that $x \in Y$ (where X and Y could be expressions involving some sets, so for Example 10, $X = \overline{A \cap B}$, and $Y = \overline{A} \cup \overline{B}$)
 - "logical equivalences" (see Example 11 page 125): Use the definition to show the inequality in question
 - "using the laws on page 124" (see Example 14 page 126): Use the laws to show the inequality in question

- "membership table" (See Example 13 page 126): This is like a truth table: you consider all the choices of A, B, and C, where x could be an element of each or not.
- 6. Generalized Intersection and Unions: Indexed Collection of Sets Suppose that A_1, A_2, \ldots, A_n is a collection of collection of sets, $(n \geq 3)$. The following are ways of combining two or more sets:
 - (a) The <u>intersection</u> of the n sets A_1, A_2, \ldots, A_n is:

$$\bigcap_{i=1}^{n} A_i = \{x : x \in A_i, \forall i, 1 \le i \le n\}.$$

(b) The <u>union</u> of of the n sets A_1, A_2, \ldots, A_n is:

$$\bigcup_{i=1}^{n} A_i = \{x : x \in A_i, \exists i, 1 \le i \le n\}.$$

Example: Let $A_i = \{i, i+1\}, 1 \le i \le 10$. What are the intersection and the union of them.

(a)
$$\bigcap_{i=1}^{10} A_i = \emptyset.$$

(b)
$$\bigcup_{i=1}^{10} A_i = \{1, 2, \dots, 11\}.$$

Note: If we have different index sets, we have different results: Let $A_i = \{i, i+1\}$, and the index set $I = \{1, 5, 10\}$. Then

(a)
$$\bigcap_{i \in I} A_i = \emptyset$$
.

(b)
$$\bigcup_{i \in I} A_i = \{1, 2, 5, 6, 10, 11\}.$$